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1. Jntroduction

With the advent of the Singularity Expansion Method (SEM) there

has been a great interest on the identification of a linear time-

invariant system by a sum of complex exponentials. In this paper the

suitability of the exponential functions for modelling a finite time

domain impulse response is examined. More specifically, we address

the question of how long a data set does one need so that the record

length behaves as if it were infinite. In other words, what is the

minimuir length of record required to resolve the various components of

decaying exponentials. The answer to this question may yield data for

a meaningful analysis.

If two signals 4(t) and '(t) are to be distinguishable the waveforms

must have the property of being as different from its shifted self as

possible. In mathematical terms, the mean squared departure of Y(t)

from 0(t+T)

fi(t)-O(t+T)12dt (1)

must be as large as possible over the range of T. By expanding the

above integral and noting the independence of the squared terms of T,

we see that minimization of (1) implies

ft(t) *(t+T)dt (2)
-CO

shall be as small as possible. Here * denotes complex conjugate.

The above integral in (2) is defined as the correlation between

the two functions '(t) and Vt). We now introduce a normalized version

of (2) which we define as the correlation coefficient p(T) between the

two signals 4(t) and '(t). The correlation coefficient P.(T) is defined as
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fT(t) *(t+-r)dt

P0O(T) = 0 . (3)
Sfvt(t)t*Wdt} { fW tdt}

So for perfect correlation, i.e. when the waveforms P(t) and (t)

are identical then pD(T)=i. Under this circumstance it is impossible

to resolve '(t) from a(t). However, when pO(T)=O, we have perfect

resolvability, i.e. the two signals '(t) and 0(t) are as different as

possible.

Observe that the limits in the integrals of (3) are from -- to

+w. In general when we are performing an experiment it is not possible

to have infinitely long data records. If we have finite length data

records then the correlation coefficient is defined as

T+A *

fT(t)0 (t+T)dt

OA ( T ) = T+A * T+A (4)
f fT(t)T*(t)dt} { f 0(t)0*(t)dt}

T T

It is clear that because of finite record lengths,

I I > I Po I. (5)

In this paper we investigate the value of A for which

I =  I p(T)I . (6)

This value of A will then dictate the length of record necessary to reduce

the correlation coefficient between the functions T(t) and 0(t) and

thereby increase the chances of resolvability.

2. Correlation Considerations Involving Complex Exponentials

In general, identification of the complex exponential components

of a signal involves solution of a set of simultaneous equations (e.g.

Prony's method). As the correlation between the components is increased,

the equations become more ill-conditioned. Consequently, the correlation
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coefficient between the two complex exponentials is a measure of the

difficulty by which the two components may be resolved. By way of

illustration, two signals with unit correlation result in a singular

set of equations whereas two signals with zero correlation yield an

uncoupled set.

Consider two simple complex exponentials given by

f{eSit }; i 1 1, 2, 0 < t < - (7)

where si oi+jwi , with ai and j= /T. The correlation coefficient

between exp [sIt] and exp [s2t] over the time interval [T, T + t]

is defined as

T+A s t s 2*t
f e e dt

PA(T) T (8)
A s1t s1*t T+A s2t s2*t

{f 1 e 1 dt} {f 2 e 2 dt}
T

Performing the integration and rearranging terms, we get

4o(io • e(U2JW2 )T .eJ (w-w 2 )T. {e [( 1+o 2 )+J(w 1- 2 )]A_1 }

al +0 2 +(w-W2)](1-e 1I'(l-e 22)

In general the correlation coefficient is a complex quantity. The

initial time instant T simply adds a constant to the phase. Since we

are primarily interested in the magnitude there is no loss in generality

by assuming T=0. Also the correlation coefficient varies as exp{ f(qJW2IT}

with T, which does not enter into our discussions. Hence we define a

new coefficient P12 (A) as

PA (T) - P12 (A)exp [a2-2ITI (10)

We want to study the properties of p1 2 (A) as the exponential function

in (10) does not provide any additional inslght.
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Of particular interest is the sinusoidal case for which 0i=0 for

i=1,2. In this case

sin[ 2 ] (i 2)A

1 1,2 (W1 W2 )A 2

2

The phase and the magnitude of the correlation coefficient is plotted

in figure I for w1 > W 2 ' Observe that the correlation coefficient

is zero for

( W I- W2 )A -2 n(f 1- f 2)A ( 22 2 n7; n=1 ,2,...
2 2

Hence, for an observation interval of length A, the two components

are uncorrelated for

f1-f2= R ; n = 1,2,... (13)

With n = 1, we obtain the conventional condition for resolution of two

frequency components which is given by

=If -f2 . (14)

1 2

for other values of fI-f 2, the magnitude of the correlation coefficient

is bounded by

1P12(A)1 20< 1 (15)
2 1 2 0  r(ff2)A

This bound is plotted in Fig. 1. When w1-w2, the correlation coefficient

is unity. This is to be expected since the two components are then

identical.

The situation is more complicated when a < 0; 1=1,2. This is

evident by consideration of the spectra involved. For the infinite

interval, ot=0 yields a line spectrum whereas 0<0 results in a
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continuous spectrum. Define

0 2 ; -2 ; Y W i) A  (16)
Cy~ I a

where, for convenience, it is assumed 02 < a, < 0. Substitution of

(16) into (8), with T=0, the correlation coefficient is expressed as

4(A) e(lelYe -i (17)P12 (A  =+a+ja .(1-e 2y)1-e 2ay

We define

1P12 (A)I = PI2 (-) IW((X,a,y) (18)

where P12 (- ) is the correlation coefficient due to the infinite

observation interval and is defined as

P2 42 (19)

The second factor in (18) can then be interpreted as a "windowing"

factor due to finite observation interval. The window factor is defined as

)2ye2Y)e2(1.)y (20)

For a fixed value of $, the maximum value of IP12(-)I occurs for

1M=N+B (21)

The peak value of IP1 2 (cO)I is then given by

1P12(-) (%=CLM +1= (22)

It is interesting to note that (17) is unchanged by interchanging the

subscripts 1 and 2 in the definitions of (10). For this reason, it

is necessary to consider only values of a greater than or equal to

unity. The value of a - 1 is, therefore, of special interest because
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it serves as the "origin" in our plots. Interestingly enough, for

both large and small values of IBI, the peak value in (22) is

approximately related to the value of the correlation coefficient for

=. Specifically,

Ip(-)1 = 4 7 (23)

for ji >> 1,

1P12(-)I 2 2TfT [IPl2( )1a= M (24)

On the other hand, for Bj<< 1,

'P12('a-l )1 P M (25)

Also, for a >> 1 and a >> jIl, observe from (19) that

1p1 2(P)l 2 (26)

Hence, for a fixed value of BI, the correlation coefficient approaches

zero in the limit as a approaches infinity.

Equation (19) is now investigated as a function of a. For a fixed

value of a, the maximum value of IP12(-)I occurs for

6M = 0. (27)

It is interesting to note that the correlation coefficient peaks when

l=W2 but does not necessarily peak when 0 1=0 2 (i.e., a=l). For

M =0, the peak value of the correlation coefficient is

_P() 2 ra (28)'P12 =6M= = i+(

For a >> 1, the peak becomes

- 2
IP12(-)l a'BM"°  ra (29)

Asymptotically, for I >> a, (19) reduces to
2 ra

IP12 (  
(30)
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Therefore, for a fixed value of a, the correlation coefficient approaches

zero in the limit as Jai approaches infinity. By comparison of (26)

with (30), it is seen that the correlation coefficient asymptotically

approaches zero at a faster rate with respect to jai as opposed to a.

A plot of Ip12 (-)I versus 1$1, with a as a parameter is shown in

Fig. 2. Recall that the larger is the correlation between signal

components, the more ill-conditioned are the equations which arise in

the identification problem. Figure 2 points out that the problem of

resolution is eased under situations of both large a's and large 6's.

Recognizing that a is constrained to be greater than unity, small a

implies ia 2. Then a large value of jai is desirable so that the

difference in wI and w2 will aid in discriminating between the two

cooponents. On the other hand, if Jai is small, a large value c a is

desirable. It is interesting to note that, for large a, the correlation

coefficient is relatively insensitive to lal (e.g., see curve with

a = 100). This is reasonable since a large value of a implies that one

component decays much more rapidly than the other. Hence, the correlation

coefficient is more influenced by the relative decays as opposed to the

relative oscillations. In the identification problem a and a are

specified and the observation interval is finite. Since an infinite

observation interval was assumed in obtaining the curves in Fig. 2, they

serve as a lower bound on the correlation coefficient for the finite

interval.

A second way of viewing 1P, 2 (-)( is presented in Fig. 3 where the

magnitude is plotted as a function of a with 181 as a parameter. The

conclusions arrived at from the previous figure are still valid.
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However, Fig. 3 clearly shows that large values for both a and [

are preferable. Also, note the sequence of peaks at values of aM

predicted by (21). For large values of 11, cM=[1g . The maximu.

value of this correlation coefficient then arises when 1021 = 'I 1-W21

where it is assumed 1021 > lall.

Still another way of presenting the results is to construct equal

correlation magnitude contours as a function of a and 1 1. Solution

of (19) for [8[ results in

= p12( ) 2 
2I) - (i+a21. (31)

The contour plot is shown in Fig. 4 where the parameter is IP12(-)I.

This plot enables the user to determine the various combinations of a

and jal which result in a given value of the correlation coefficient.

The plot also allows one to determine the sensitivity of the signal

parameters to small changes in the correlation coefficients. For example,

assume a1= 3 and j=4. For 1012(-)I=0.4. the allowable value of

is approximately 23, as read from Fig. 4. The corresponding value

of a2 is -69. When IP12 (-)1=0.5, the allowable values for a are 1.3

and 13. This yields values for a2 of 3.9 and -39, respectively. In

this case, the value of a2 is seen to be highly sensitive to changes

in the correlation coefficient.

Our discussion thus far has dealt with the infinite interval. We

now consider the effect of a finite observation. The windowing effect

is accounted for in (18) by the second factor which is W(a,a,y), and

can be shown to approach unity for all possible choices of a and B, as

hi - . Obviously, the effect of windowing is negligible when

W(,La,y)=l. Since a > I and y<O, W(a,$,y) is bounded by
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<W (i, y)< l+e2y (32)

Observe that the bounds are independent of ct and a. The inequality in

(32) can be used to obtain an estimate for the minimum length of the

observation interval in order that the correlation between the two

components be approximately the same as for the infinite interval.

(In general, windowing tends to increase the correlation). From (32)

the following table is obtained.

Table 1. Lower and Upper Bounds on W(a, ,y).

2y l+e2y
lY 2

-1 .930 1.313

-2 .991 1.037

-3 .999 1.005

It is concluded from Table 1 that the record length can be assumed

to be infinite, as far as W(c,B,y) is concerned, provided y < -2.

In other words, when the length of the observation interval is such

that

A > -2 where a<0 <O; i = 2,3,..., (33)

then p1 2 (A)l = 112(c)1. Since a finite interval tends to increase

the correlation coefficient (see Figs. 5, 6), it is desirable that the

inequality in (33) be satisfied.

The behavior of IP12 (A)I as a function of jYj is illustrated in

Figures 5 and 6. In Figure 5, a is constrained to be unity as the

parameter 1 1 is varied from I to 100. Note that the curves have

settled down to their asymptotic behavior for iYt >2. It is interesting
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to compare the damped case (i.e., a 1 0) to the sinusoidal case

(i.e., 01 = 0). For oi= -1, ]Bj = jw1-w2j. The dashed line in Fig. 5

corresponds to the sinusoidal case where 1= 0. This serves

as a reference for the damped case where 1Sj = 10 and 01 = -1. In

Figure 6, 1i is constrained to equal the value 3 as the parameter a

is varied from I to 100. Again asymptotic values have been reached

for lyl > 2. The dashed curve in Fig. 6 represents the sinusoidal case

with Iw,-w 2l = 3. Since (BI = 3, each curve in the figure may be

compared with the sinusoidal case provided 0 I is assumed equal to -1.

for a > 1, it is interesting to note that there exist values of jyj

where the correlation coefficient is smaller than that of the sinusoidal

case. The only exception is for a = 1. Notice that the largest asymptote

occurs for a = 47 =47, as predicted by (21).

3. Orthogonality Property of Complex Exponentials

In general, two complex exponentials as given by (I) are not

orthogonal over any interval within [0,0). In this section, we would like

to investigate under what conditions two complex exponentials (which

are orthogonal in the infinite interval) remain almost orthogonal in

the finite time interval.

The Gram Schmidt orthogonalization procedure can generally be used

to orthoganalize a set of functions. However, a simpler procedure for

exponential functions was developed by Kautz [I] and applied in [2-3].

The orthonormalization is carried out over the semi-infinite interval

and is based upon the Parseval relation for an inner product between two

time functions. Specifically, the Parseval relation is

+f ds
f fg* dt f F(s) G*(-s) 2s (34)
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It follows that the orthogonality in the time domain is equivalent to

orthogonality in the frequency domain. If f and g are sums of complex

exponentials, they will be orthogonal provided F(s)e G (-s) is a rational

function which is analytic (i.e. has no poles) either in the left half

or in the right half of the s-plane. Consider the set of exponentials

sit

{e }, i=l,2,.... ,n....m t > 0, a < 0 (35)

th
and construct an orthonormal set where the n orthonormal basis

function is given by

E7 n-i S+s
Y(s) _ Ti (36)
n iil i

n i~lth
Eq. (36) can be interpreted in terms of passing the n exponential time

function through an all-pass filter structured from the previous n-i

exponents. The all-pass filter interpretation points out that it is the

phase which is responsible for orthogonality.

Thus far, orthogonality has been considered over a semi-infinite

interval. Provided a finite interval is suitably long, orthogonality

can still be approximated by this procedure. From (36), note that

1n s it

T (t) = L- (s)} f Aie (37)

where L -I is the inverse Laplace transform.

In the time domain orthonormality requires

f z(t)(t) dt = 0 ; P (38)
0t

Substitution of (37) into (38) yields

ft (t) dt i Aik feSi+Sk)tdt
0 q i-il 0

k AA ~(; -q (9
- - (39),O
i-I k-1 £k q
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For a finite interval of length A, consider

* e -1

A (t)'Y t) dt = S e +sk)A (40)

0 i=l k=1 si+sk

Clearly, (40) reduces to (39) provided

I k 
T << 

c b(41)

Assume l011 < 1021 for i = 2,3,...,n. Then (41) can be replaced by the

familiar inequality

(SiSkMI< e 1= e 2y (42)

Provided the interval length is chosen such that (42) is satisfied, the

orthonormal basis generated by (36) is very close to being orthonormal

over the finite interval. Interestingly enough, lyl < 2, which was the

condition for 1p1 2 (A)l = 1p12 (-)1, also satisfies the orthogonality

condition of (42). Thus

IyI > 2 (43)

is the condition to be satisfied if a finite interval is to be considered

as though it were an infinite interval.

4. Conclusion
-2 (hr I i h

When Ijy > 2 or the record length is greater than 2(where 1 is the
G11

real part of the most slowly decaying exponential) then the finite

record length may be considered as though it were infinite and, in

addition, a set of nearly orthogonal basis can be generated over the

finite interval.
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